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A wavelet analysis on the output signal of a non-linear system in the
neighbourhood of a Hopf bifurcation (i.e., a limit-cycle oscillation) has been
performed to point out the linear and non-linear signatures of the system. Indeed,
this kind of non-linear behaviour is characterized not only by a simple harmonic
oscillation in developed steady state condition, but also by an initial transitory
phase with a complex time evolution of the spectral signal content. Both these
issues could be described in an analytical way via a singular perturbation analysis
but they could be also directly analyzed by a signal-processing tool via wavelet
analysis (Continuous Wavelet Transform, CWT): this is obtained by using the
wavelet capability in describing e$ciently the time evolution of the spectrum of the
signal (i.e., a non-linear &&signature'' of a Hopf bifurcation). Furthermore, the
analytical results given by the singular perturbation analysis for the same class of
non-linear problems, have allowed one to interpret correctly the results obtained
by the wavelet analysis. In this paper this theoretical link between the wavelet
analysis and the output signal of a dynamical system (recently achieved for linear
mechanical damped systems) has been extended to non-linear systems in the
neighbourhood of a Hopf bifurcation. This kind of analysis is of natural interest in
aeroelastic applications where an e$cient (and noise insensitive) analysis of the
output signal recorded during the #ight tests performed in the neighbourhood of
the critical condition (#utter) may be desirable together with the capability to
record the non-linear system signature. The time-scale decompositions (CWT)
have given the opportunity to analyze pre- and post-critical transient behaviour of
a non-linear aeroelastic system and, thus, upon considering the analytical tool
given by the singular perturbation analysis, to identify its linear and non-linear
features. Applications include either two non-linear coupled oscillators or a typical
section in a supersonic #ow.

( 1999 Academic Press
1. INTRODUCTION

Experimental tests are an essential issue for the identi"cation of dynamical systems.
Tests are also necessary a posteriori to tune the numerical model to the real system
and to &&update'' the numerical model as well. Furthermore, in the "eld of
aeroelasticity, #ight tests are also essential because they can give an estimate of
systems stability margins [1].
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On the other hand, one has also to consider that the design of experimental #ight
tests and their "nal results are both highly a!ected by the methods available for
processing and analyzing the data recorded during the test. Indeed, the
identi"cation methods based on wavelet transforms have shown several advantages
in aeroelastic analysis with respect to the standard ones, above all for the &&de-
noising'' e!ects included in the method: in references [1, 2] an overview of #ight-test
data analysis using wavelets for aeroelastic system identi"cation and de-noising
was shown; the wavelet tools have been also used for the modal parameters
identi"cation of linear structural}dynamical systems in references [3}5]; moreover,
in reference to the class of aeroelastic problems, in references [6, 7] the evaluation
of the stability margin with respect to a given parameter (e.g., the #ight speed) based
on measured data was presented as a relevant issue.

Nevertheless, for both system identi"cation and stability-margin identi"cation,
the transient nature of the in#ight aeroelastic dynamics (intermittency, modulation,
non-periodicity, non-stationarity, time-variance and non-linearity in the data)
seems to show the standard Fourier analysis to be inadequate. Because of these
reasons, time-scale analyses have recently been developed in this "eld, these
tools having more suitable features for the mentioned problems than the classical
methods of signal processing analysis. Speci"cally, wavelets are waveforms
that, once correlated to the signal, allow one to localize in time and frequency
the signal energetic content with arbitrary high resolution in time at high
frequencies and arbitrary high-frequency resolution at low frequencies: in this way,
one can identify the features of the signal localized or spread both in time and
frequency. Assuming that the transient of the energetic content of the output signal
is generally a very relevant signature of systems (e.g., consider the impulse response
for linear systems), one may realize the wavelet capabilities for the identi"cation of
the main features of linear and non-linear systems and, in particular, their stability
margins.

In this paper the description o!ered by the wavelet analysis for system responses
(used for the identi"cation of linear mechanical systems in reference [4] and applied
in reference [7] for the stability-margin estimate of non-linear system) has been
studied interpreting the obtained results via a singular perturbation analysis [8].
To achieve this goal (see also reference [9]), a wavelet analysis of the response*to
initial conditions*of non-linear systems in the neighbourhood of a Hopf
bifurcation (i.e., limit cycle behaviour) will be examined with the support of the
analytical predictions given by a singular perturbation method: one-parameter
autonomous dynamical systems, with algebraic non-linearities and admitting
trivial steady state solution, will be considered. The parameter will be denoted by k,
and the analyses will be performed in the neighbourhood of its critical value k

0
, for

which the linear analysis predicts the transition from stable to unstable behaviour.
Then, it is assumed that for k(k

0
, the steady-state solution x"0 is linearly stable,

in the sense that all the eigenvalues of the perturbation matrix around x"0 have
a negative real part; moreover, it is assumed that, at k"k

0
, the system experiences

a Hopf bifurcation in the sense that one (and only one) pair of complex conjugate
eigenvalues crosses the imaginary axis [10]. As emphasized in most of the papers in
the "eld of non-linear aeroelasticity (see reference [11] for a recent and rich review
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on the subject), this mathematical description is physically performed by most of
the aeroelastic systems in the neighbourhood of their critical stability margin: in
this case, k is typically the #ight speed ;

=
, the instability connected with the Hopf

bifurcation is #utter, and then k
0

is referred to as the #utter speed (;
=F

). The
analytical solution for the transient and steady state behaviour will be expressed by
using an asymptotic-expansion obtained in reference [12] through a singular
perturbation method.

In the "rst part of the paper the general analytical solutions available by
the singular perturbation analysis are analyzed; next, it is shown how this
approach allows one to predict the most relevant non-linear features of
the non-linear systems response. In the same section an overview of the continuous
wavelet transforms (CWT) is given and a theoretical connection between
the analytical predictions (by the singular perturbation analysis) and the
results obtained by a CWT analysis of the time response is established. In the
second part, two applications will be examined: the "rst concerns a simple MDOF
non-linear dynamical system, while the second concerns an airfoil in a supersonic
#ow.

2. THEORETICAL BASIS

Consider a general non-linear system represented in state space by

z5 "A(k)z#f(z, k), (1)

where z3RNs (N
s

is the state-space dimension) is the state-space vector,
A represents the linear part of the system, f the non-linear part (without loss of
generality, only algebraic non-linearities are considered), and k is a parameter.

Suppose that if k(k
0
, the trivial solution of the linear part of the system is

stable (all of the eigenvalues of A have negative real part), while if k'k
0

the linear
part of the system is unstable (there is at least one real eigenvalue or a complex
conjugate pair of eigenvalues with positive real part).

Considering, for the sake of simplicity, only cubic non-linearities, one has

f(z, k)"G
Ns

+
p,q, r/1

c
npqr

(k) z
p
z
q
z
rH. (2)

where c
npqr

(k) is a N
s
]N

s
]N

s
]N

s
non-linear-coe$cient matrix. In the next

section, the general solution for the above system in the neighbourhood of a
Hopf bifurcation will be analytically obtained (see references [12, 13] for
details on the singular perturbation method used in this paper); next, the
basic concepts of the CWT analysis will be presented in section 2.2 and, "nally,
the theoretical relationship between these two di!erent point of views will be shown
in section 2.3.
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2.1. HOPF BIFURCATION VIA SINGULAR PERTURBATION ANALYSIS

The system given by equation (1) has been considered in the neighbourhood of
a limit cycle solution (i.e., for kKk

0
). Calling e"Dk!k

0
D a small-perturbation

parameter, one has

k"k
0
$e, (3)

where the plus (minus) holds for post-critical (pre-critical) response. It is supposed
that for k"k

0
a couple (and only one) of eigenvalues of the matrix A have real

parts equal to zero (say j
1,2

"$ju
0
) while the remaining eigenvalues are still

stable. Calling A
0
"A (k

0
) , A

1
"LA/LkDk/k0

, one has

A(k)"A
0
$eA

1
#O (e2), (4)

while c
npqr

(k)"c
npqr

(k
0
)#O(e). Upon considering

z " Je Ux, (5)

where U is the eigenvector matrix of A
0

(it is assumed that in the "rst two columns
of U there are the eigenvectors u(1), u(2) corresponding to the critical eigenvalues
j
1,2

), equation (1) becomes

x5 "K
0
x#eG$

Ns

+
s/1

a
js
x
s
#

Ns

+
p,q,r/1

c
jpqr

x
p
x
q
x
rH , (6)

where K
0

is the diagonal matrix containing the A
0

eigenvalues and

a
js

:"
Ns

+
l,m/1

;~1
jl

A
1lm
;
ms

, c
jpqr

:"
Ns

+
s, t,u,v/1

;~1
js

c
stuv
;

tp
;
uq
;

vr
. (7, 8)

Applying a &&zero divisors'' procedure, i.e. searching a transformed problem through
the &&near-identity transformation'' (see e.g., reference [8] for the theoretical details
and references [12, 13] for applications of the method in aeroelasticity),

x"y#h(y, e), (9)

given by the vector h(y, e), one obtains

y5 "K
0
y#e G$

Ns

+
s/1

a%44
js

y
s
#

Ns

+
p,q, r/1

c%44
jpqr

y
p
y
q
y
rH, (10)

where

a%44
js
"a

js
if j

s
!j

j
"0, a%44

+4
"0 if j

s
!j

j
O0, (11)
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and

c%44
jpqr

"c
jpqr

if j
p
#j

q
#j

r
!j

j
"0,

c%44
jpqr

"0 if j
p
#j

q
#j

r
!j

j
O0.

(12)

Note that the "rst two scalar equations given by equation (10) are uncoupled
with the remainders. Upon using the polar-co-ordinate change

y
1
"A

1
e+r1, y

2
"A

1
e~+r1, (13)

the amplitude A
1

and phase u
1

of the critical mode (corresponding to the
eigenvalues j

1
, j

2
) are given by (see references [15, 12, 10])

A
1
"C

!b(1)
R

/c(1)
R

1#k e2b(1)
R t D

1@2
(14)

u
1
"t (!b(1)

I
#c(1)

I
b (1)
R

/c(1)
R

)#(c(1)
I

/c(1)
R

) ln(A
1
)#u0

1
, (15)

where k, u0
1

depend on the initial conditions and

b(1) :"b(1)
R
#jb(1)

I
"!ju

0
Gea

11
"!ju

0
Gev(1)TA

1
u(1), (16)

c(1) :"c(1)
R

#jc(1)
I
"!e (c

1211
#c

1121
#c

1112
),

"!ev(1)TG
Ns

+
p,q,r/1

c
jpqr

(u(1)
p

*u(1)
q

u(1)
r
#u(1)

p
u(1)
q

*u(1)
r
#u(1)

p
u(1)
q

u(1)
r

*)H . (17)

Considering the other N
s
!2 equations corresponding to complex eigenvalues

with negative real part,s one obtains equations that can be solved sequentially and
then, by using equations (14) and (15), one has

A
n
"A0

n
(A

1
/A0

1
)c(n)R @c(1)R et(~b(n)

R `b(1)
R c(n)R @c(1)R ), (18)

u
n
"t(!b(n)

I
#c(n)

I
b(1)
R

/c(1)
R

)#(c(n)
I

/c(1)
R

) ln(A
1
)#u0

n
, (19)

where y
n
"A

n
e+rn, y

n`1
"A

n
e~+rn with n"3, 5,2, N

c
!1 where N

c
is the number

of the complex eigenvalues, A0
n

and u0
n

are constants depending on the initial
sReal stable eigenvalues (eigenvectors) could be also considered in the present analysis [13]. The
&&slave modes'' corresponding to zero-imaginary part eigenvalues should be given by

y
m
(t)"y0

mA
A

1
A0

1
B
c(m)
R @c(1)R et(~b(m)

R `b(1)
R c(m)

R @c(1)R )
, (47)

where the constants y0
m

depend on the initial condition.
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conditions and

b(n) :"b(n)
R
#jb(n)

I
"!j

n
Gea

nn
"!j

n
Gev(n)TA

1
u(n), (20)

c(n) :"c(n)
R
#jc(n)

I
"!e(c

nn12
#c

nn21
#c

n1n2
#c

n2n1
#c

n12n
#c

n21n
)

"!ev(n)TG
Ns

+
p,q,r/1

c
npqr

(u(n)
p

u(1)
q

u(2)
r

#u(n)
p

u(2)
q

u(1)
r
#u(1)

p
u(n)
q

u(2)
r

#u(2)
p

u(n)
q

u(1)
r
#u(1)

p
u(2)
q

u(n)
r
#u(2)

p
u(1)
q

u(n)
r

)H , n"3, 5,2. (21)

Thus, upon considering equations (5), (9), (13)}(15), (18) and (19), the response to
initial conditions is

z"Je Au(1)A
1
e+r1#u(2)A

1
e~+r1#

Nc

+
n/3

u(n)A
n
e+rn#

Ns

+
m/Nc`1

u(m)y
mB

# eJeUG
Ns

+
s/1

a!64
js

j
s
!j

j

y
s
#

Ns

+
p,q,r/1

c!64
jpqr

j
p
#j

q
#j

r
!j

j

y
p
y
q
y
rH . (22)

where a!64
js

:"a
js
!a%44

js
and c!64

jpqr
:"c

jpqr
!c%44

jpqr
. Note that the contribution of the

real (stable) eigenvalues has been also included (see reference [13]; for a higher
order analysis considering only the critical mode of vibration but using higher
order terms in equation (9), see reference [14]). Note also that the limit-cycle
solution may be stable if (see reference [15]), although the linear part of the system
is unstable, b(1)

R
(0 (i.e. k'k

0
), the non-linear part of the system is stable, c(1)

R
'0:

i.e., if b(1)
R
(0 and c(1)

R
'0 are both satis"ed, a stable limit cycle may be observed in

the post-critical response of the system. This case is interesting in an aeroelastic
point of view because it represents a benign (non-linear) -utter, i.e., a stable limit
cycle oscillation.

2.2. CONTINUOUS WAVELET TRANSFORM

The Fourier transform is a linear expansion of the signal into sinusoidal
waveforms which have in"nite length in time and that are extremely localized in
frequency: this causes, in the frequency domain, the total loss of the
time}information; correspondingly, the Fourier transform is not able to localize in
the time}domain the instantaneous spectral features of the signal, i.e., it is not
useful when it is necessary to analyze signals whose spectral characteristics are
strongly time dependent. An improvement of the Fourier transform is given by the
Fourier windowed transform (FWT; see reference [16] for theory and numerical
applications): when using this transform, the signal is "rst enveloped with
a time}window of given length and then Fourier-transformed. The FWT retains
the time}information but has strong time}frequency resolution limitations: as
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a matter of fact, if shorter windows are chosen, then one will have a higher time
resolution but a coarser frequency resolution; on the other hand, if longer windows
are chosen, then one will have a higher frequency resolution but a coarser time
resolution. A superimposition of the windows can only partially bypass the
resolution limitations.

In order to overcome these limitations [16, 17] in the last decade a new method,
based on wavelets, has been developed. The wavelets are particular waveforms that,
correlated to the signal, are able to show and identify its features with arbitrary
frequency resolution at low frequencies and arbitrary time resolution at high
frequencies [19]. Indeed, the only limitation to time}frequency resolution for this
method is given by the uncertainty principle [18].

The continous wavelet transform ¹wavx of the signal x(t) is de"ned as [19]

(¹wavx) (a, q) :"
1

Ja P
`=

~=

x(t)tA
t!q

a Bdt , (23)

where a is the so-called scaling parameter, q is the localization parameter and t(t) is
called mother wavelet. The previous transform has been performed for all the
applications presented in this paper by using the MA¹¸AB=avelet ¹oolbox [17].
The set of wavelets ta, q is obtained by stretching or compressing the mother
wavelet by the scaling parameter and localizing it by the parameter q. Then, one has

ta, q(t)"
1

Ja
t A

t!q
a B . (24)

The mother wavelet used in the present paper is the Morlet Wavelet [19] de"ned by

t(t)"e~(t2@2) e+u0t. (25)

Speci"cally, in order to obtain real CWT functions one considers only the real part
of the Morlet mother wavelet, with Fourier Transform given by (note that as t is
real and the signals considered are also real; then, the CWT function given by
equation (23) is real too)

t) (u)"Jn/2 (e~(1@2)(u~u0)2#e~(1@2)(u`u0)2), (26)

where the symbol ( denotes the Fourier transform. This mother wavelet was chosen
because it generates wavelets ta,q having sinusoidal waveforms with Gaussian
envelope in the time}domain and Gaussian shape in the frequency}domain;
therefore, these wavelets are similar, from a functional point of view, to vibration
signals (and then, suitable to be correlated with these kind of signals) and in the
meanwhile they are localized in time [see the Gaussian time function in equation
(25)) and frequency (see equation (26)].

In Figure 1 the real and the imaginary parts of two Morlet Wavelets (with
u

0
"2n rad/s) obtained for two di!erent values of the scaling parameter are



Figure 1. Real part, imaginary part, and Fourier transform of the real part of two Morlet wavelets
(for ) ) ) ) ) a"0)5 and } } } a"2).
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presented (a"0)5 and 2); furthermore, in the bottom "gure the magnitude of the
Fourier transform of their real part is also shown.

The continuous wavelet transform (CWT) of a signal may be represented in
a time-scale plane, but on a time}frequency plane as well. As a matter of fact, the
relation between frequency f and scale a is

a"u
0
/2nf"u

0
/u, (27)

where u is the angular frequency corresponding to the scale a. The previous
equation allows one to map the time-scale plane in a time}frequency plane.

Substituting equation (25) in equation (23), we obtain:

(¹wavx) (a, q)"!

1

Ja P
`=

~=
Cx (q!t) e~1@2(t@a)2D e~+utdt, (28)

which shows the peculiarity of the CWT versus FWT: indeed, it is apparent that
a CWT with Morlet Wavelet consists in Fourier transforming the signal enveloped
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with Gaussian windows whose time length is not constant but depends on the
frequency (i.e., on the scale parameter a). Speci"cally, the time length of the
windows is small for high frequencies u (small values of a) and large for low
frequencies u (large values of a).

It is necessary to "nd a formula able to reconstruct the time signal by its CWT
because an inverse CWT may not exist for certain wavelet type [19]. The
reconstruction formula could allow one to "lter the signal in the time}frequency
domain (directly "ltering the CWT of the signal) and then to reconstruct the "ltered
signal in the time}domain. This reconstruction formula could also be used to "nd
the frequency response functions (FRF) of a linear system, or to identify the linear
part of non-linear systems. This can be carried out in a least-squares sense because
the wavelets set given by equation (24) is not a set of orthogonal functions. In order
to obtain that, one applies the Fourier transform to equation (23) from the domain
q to the domain u6 obtaining

¹] wavx(a, u6 )"Jat) (auN )x' (u6 ), (29)

where x' (u6 ) is the Fourier transform (from the time}domain) of the signal and
¹] wavx (a, u6 ) is the Fourier transform of the CWT of the signal performed in the
domain of the localization parameter q. Thus, as ¹] wavx (a, uN ) and t) are known
functions, one can obtain (in a least-squares sense) x' (u6 ); then, applying the inverse
of the Fourier transform (from the domain uN to the domain t ), one can "nd the
reconstructed signal x (t). Indeed, from a numerical point of view, equation (29) may
be written for several values of the scaling parameter a, and the system of equations
could then be solved in a least-squares sense,

xL (uN )"

t)
a1

(uN )
tK

a2
(uN )
F

tK
aM

(uN )

T ¹K wavx(a
1
, uN )

¹K wavx(a
2
, uN )

F

¹K wavx (a
M

, uN )

t)
a1

(uN )
tK
a2

(uN )
F

tK
aM

(uN )

T tK
a1

(uN )
tK
a2

(uN )
F

tK
aM

(uN )

, (30)

where t)
ai
"Ja

i
t) (a

i
u) (i"12M) and M is the number of sampled values of a.

In Figure 2 the output of a SDOF viscous damped system is shown. The system
was excited by using a chirp, i.e., a typical signal with a time-varying spectrum. In
the top "gure the original output signal x (t) is presented. In the middle "gure is the
signal "rst transformed via CWT and then reconstructed by using the proposed
method (equation (30)), whereas in the third "gure is the signal reconstructed
obtained by using the method proposed in reference [2]. In Figure 3 the same



Figure 2. Signal reconstruction in the absence of noise: original signal (upper), proposed recon-
struction (lower), reconstruction proposed in reference [2] (lower).
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results are presented in the presence of noise: as one can see, in this case, the
reconstructed signal is not punctually equal to the original signal. This is due to the
fact that the system of equation (30) was solved in a least-squares sense: i.e.,
averaging the equations corresponding to di!erent values of a.

2.3. RELATIONSHIP BETWEEN ANALYTICAL PREDICTIONS AND WAVELET ANALYSIS

In this section it is shown how the continuous wavelet transform (CWT)
o!ers the possibility to identify the time-varying frequencies u

i
and the amplitudes

A
i

(i"1,2,N
c
) of a non-linear system in a Hopf bifurcation; as shown

in section 2.1, these quantities can be analytically predicted by singular
perturbation methods, once the response to initial conditions of a non-linear
system is known.

From equation (22) one can see that the terms of order Je oscillate with the
frequencies

u
1
(t) :"

Lu
1

Lt
"!b (1)

I
#c(1)

I

b (1)
R

/c(1)
R

1#ke2b(1)
R t

(31)



Figure 3. Signal reconstruction in the presence of noise: original signal (upper), proposed recon-
struction (lower), reconstruction proposed in reference [2] (lower).
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u
n
(t) :"

Lu
n

Lt
"!b(n)

I
#c(n)

I

b(1)
R

/c(1)
R

1#ke2b(1)
R t

n"3,2, N
c
, (32)

u
m
(t) :"

Lu
m

Lt
"0 m"N

c
#1,2, N

s
. (33)

From equations (31) and (32) one can observe that the frequencies in the
neighbourhood of the eigenvalues with non-zero imaginary part vary during the
transient response. Thus, it is necessary to consider both the time- and the
frequency-information (i.e., time-scale or time}frequency decompositions of the
signal) if one wants to identify the non-linear nature of these systems.

In Figures 4 and 5 the function u
1
/u

r
is shown (where u

r
"limq?`=

u
1
(q)) for

di!erent values of e for post-critical tests, and in the two cases with k(0 (Figure 4:
initial conditions outside the limit cycle) and k'0 (Figure 5: initial conditions
inside the limit cycle). In order to describe the time evolution of these frequencies,
a CWT function section at "xed q"q6 has been considered and its local maxima
given by the condition (for continuous values of a)

L
La

D¹wavx(a, q6 ) D"0 (34)



Figure 4. u
1
(q) (for k(0 and Db

R
/c

R
D"0)5); time evolution of u

1
in the non-linear transient with

the initial condition outside of the limit cycle. ** e"0)1; } ) } ) } e"0)3; } } } e"0)6.
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have been found. Repeating for di!erent values of q6 one would be able to identify
the functions u

i
(q) (∀i"1, 2,2, N

c
).s Once these frequency functions have been

estimated it is possible to identify the functions A
1
,2, A

n
(see equations (14) and

(18)) as shown in the remainder of this section: these functions are instantaneously
proportional to the energy associated to each natural frequency and then are
representative of the stability of each non-linear mode.

To "nd the relationship between ¹wavx (a, q) and the amplitudes A
i
, one can "rst

consider the response x(t) to initial conditions of a SDOF viscous damped linear
system. If f is the damping ratio and u

n
the natural undamped frequency, one

has [4]
x (t)"e~funte+(un

J1~f2t`u
0)"A(t) e+(u6 t`u

0) . (35)

If A(t) is slowly varying and, for simplicity, disregarding u
0

one has [4]:

¹wavx (a, q)K
A(q)

Ja P
`=

~=

tA
t!q

a B e~+u6 t dtKJat) (au6 )A (q)e~+u6 q . (36)
s It is worth pointing out that the identi"cation of u
i
(q) is very important also because these

functions depend on e, i.e. on k; thus, identifying u
i
(q)∀i (or at least u

1
(q)), in tests at di!erent values of

k and knowing the structure of the analytical predictions (equations (31) and (32)) one could identify
the critical value of the parameter (k

0
; see reference [9]).



Figure 5. u
1
(q) (for k'0 and Db

R
/c

R
D"0)5); time evolution of u

1
in the non-linear transient with

initial condition inside of the limit cycle. ** e"0)1; } ) } ) } e"0)3; } } } e"0)6.
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Then, considering the envelope (here indicated with the symbol D D) of a cross section
(a CWT section taken at "xed value of the scaling parameter a) of ¹wavx
corresponding to the scale-parameter aN "u

0
/u6 one has:

D¹wavx(aN , q) DKJnu
0
/2u6 A (q). (37)

As shown in reference [4], the previous equation holds for linear MDOF systems as
well since the CWT is a linear transformation and the response to initial conditions
of these systems is given by

x
i
(t)"

N
+
k/1

B
i,k

e~fkunkt e +(unk
J1~f2k t`u

k),
N
+
k/1

A
i,k

e +(unk
J1~f2k t`u

k) . (38)

For the sake of completeness, the hypothesis that the wavelets have, in the
frequency domain, a compact support, should be also included [4]. In Figure 6
a numerical test on equation (37) is shown for the response of a 2 DOF coupled
linear system: in the top "gure the response (one of two DOF) is presented and
in the last two "gures the cross-sections of the CWT corresponding to the
natural frequencies are shown, together with the theoretically predicted envelope
functions (proportional to A

i,k
"B

i,k
e~fkunkt , see equation (37)). In Figure 7 the



Figure 6. Proportionality between the cross-sections of CWT and predicted A
1
, A

2
for a 2-DOF

linear system ( f
n1
"2)0 Hz, f

1
"0)01, f

n2
"14)0 Hz, f

2
"0)0005); time response (upper); cross-section

of the CWT for u"u
1

(middle); cross-section of the CWT for u"u
2

(lower).
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three-dimensional plot of the CWT coe$cients shows that the development in time
of the frequency content of the response for the two modes is clearly apparent.

Now considering an MDOF non-linear system in a Hopf bifurcation (equations
(13)}(15), (18), (19) and (22)), one has that, if A

1
, u

1
are slowly varying functions,

then

D¹wavy
1
(a

1
, q) DKJnu

0
/2u

1
A

1
(q), (39)

where a
1

is the scale corresponding to u
1
. On the other hand, if A

n
, u

n
and logA

1
(see equations (19) and (32)) are slowly varying

D¹wavy
n
(a

n
, q) DKJnu

0
/2u

n
A

n
(q), n"3,2, N

c
. (40)

Thus, the envelopes of the CWT logarithmic cross-sections, taken at the scales
corresponding to the non-linear-characteristic frequencies, are proportional to the
energy associated to that particular frequency and predicted by using the singular
perturbation method. Equations (39) and (40) hold both for the pre- and
post-critical behaviour.



Figure 7. CWT of the response to initial conditions of a 2-DOF linear system.
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Besides identifying the amplitude A
1
, one may also identify the system's stability

margins through pre-critical (k(k
0
) simulations or tests. Taking the logarithm of

equation (14) yields

logA
1
"

1
2

log K
b(1)
R

c(1)
R
K!

1
2

log(1#keb(1)
R t ). (41)

In pre-critical conditions b(1)
R
'0, then, if keb(1)

R tA1, one obtains

logD¹wavy
1
(a

1
, q) DK

1
2

log
nu

0
2u6

#log A
1
(t) KK!b(1)

R
t. (42)

Thus, the slope / of the logarithm plot of the CWT cross-sections is analytically
given by the coe$cient b(1)

R
and then is proportional to e (from equation (16)). By

identifying / through several tests at di!erent pre-critical values of k, the CWT
allows one to identify the system stability margin k

0
.

3. APPLICATIONS

In this Section two applications of the theory presented previously will be shown:
"rst, for the sake of clarity, a very simple application to an oscillatory system will be
presented; then a more complex application to an aerolastic system will be shown.
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3.1. A SIMPLE NON-LINEAR MODEL

Consider the non-linear coupled oscillators described by the equations

xK
1
#u2

1
x
1
#xR

1C!k#Ax2
1
#

1
u2

1

xR 2
1BD"0, (43)

xK
2
#u2

2
x
2
#xR

2C2fu
2
!c

1Ax2
1
#

1
u2

1

xR 2
1BD#x3

1
"0. (44)

The eigenvalues corresponding to the linear part of the system depend on the
parameter k (with DkD@1):

j
1,2

"

k
2
$ju

1S1!
k2

4u2
1

K

k
2
$ju

1
, (45)

j
3,4

"!fu
2
$ju

2
J1!f2K!fu

2
$ju

2
. (46)

Note that for k(0 all of the eigenvalues have negative real parts (f is a viscous
damping ratio), while for k'0 two eigenvalues become unstable (thus, for this
system one has k

0
"0; see section 1). In Figure 8 the response to initial conditions,

for pre- and post-critical values of the parameter k, is presented. The initial
conditions were chosen in order to excite both the natural modes of vibration
relative to the linear part of the system. Upon observing the x

1
time}history in

post-critical conditions, the incoming of a limit cycle is apparent; in the bottom
"gures (Figure 8) a zoom on the response is presented in order to show how the
response evaluated by integrating numerically (Runge}Kutta method) equations
(43) and (44) is very close to the one predicted by the singular perturbation method
(indicated by Lie in Figure 8); the very small di!erences are due to the higher order
terms.

Next, the results relative to the evaluation of the non-linear envelope functions
and dominant frequencies of the limit-cycle via CWT will be shown. In Figure 9,
by evaluating the CWT of the response, considering its sections at q"q6 "100 s
and "nally "nding the local maxima, the frequencies u

1
, u

2
were identi"ed:

¹wavx
1
(a, q6 ) and ¹wavx

2
(a, q6 ) are shown in the two cases k(k

0
(pre-critical

conditions) and k'k
0

(post-critical conditions). In the sections one sees
the evident local maxima denoting the instantaneously dominant frequencies
(equation (34)).

Once these frequencies have been identi"ed, it is possible to study the CWT
cross-sections, for u"u

1
and u

2
, and then identify the amplitudes A

i
(see

equations (39) and (40)).
In Figure 10 the cross-sections (corresponding to the dominant frequencies

u
1

and u
2
) of the wavelet transform of the responses are shown: in the same "gure

the envelopes theoretically predicted by the perturbation analysis (equations (14)
and (18)) are also depicted. One can see that only for very small values of q there is



Figure 8. Response to initial conditions of the simple non-linear dynamic model (u
1
"1

rad/s, u
2
"2)234 rad/s, d"0)01, c

1
"1, c

2
"c

3
"0) for pre-critical (k"!0)02) and post-critical

(k"0)02) conditions.
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a relevant di!erence between the CWT cross-sections and their theoretically
predicted envelopes. This is due to the truncation error that one has in evaluating
the CWT coe$cients for very small values of q (for such values the wavelets ta, q are
partially outside of the signal).

In Figure 11 the semi-logarithmic plot of the CWT cross section (for u"u
1
) is

shown for di!erent values of k(k
0

(see equation (42)). Note that, the closer one is
to the critical condition, the less is the slope / of the CWT cross section (that
directly represents the coe$cient b(1)

R
). Evaluating the values of / and interpolating

them, one is able to estimate the value of the stability margin k
0
: in Figure 12 the

linear interpolation is shown neglecting the presence of noise (thus for signal-to-
noise ratio-SNR-equal to in"nity). In Table 1 the k

0
estimates (k6

0
) are presented for

di!erent values of the SNR: from these results one can see that the method gives
very good estimates for k

0
even for very high SNR levels. This is probably due to

several reasons: the "rst is that one is considering the amplitudes of the CWT
cross-section (for u"constant) and not the amplitudes of the response and this
causes an operation of averaging in the time}domain, that reduces the e!ect of
zero-average noise. Also, when one is considering only a cross-section of the CWT
corresponding to the critical natural frequency, only the noise at this frequency can
e!ectively a!ect the measurement. Furthermore, the least-squares procedure for the
results obtained for di!erent values of k causes another average in the k-domain.



Figure 9. CWT sections for pre- and post-critical simulations. ** ¹wavx
1
(a, q"100 s);

) ) ) ) ¹wavx
2
(a, q"100 s).

Figure 10. CWT cross-sections for x
1

(upper) x
2

( lower) and theoretically predicted envelopes
(proportional to A

1
, A

3
). ** CWT c.s. ) ) ) ) Theor. .
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Figure 11. Semi-logarithmic plot of the CWT cross-sections for di!erent values of the parameter k.

Figure 12. Identi"cation of the system stability margin.
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TABLE 1

Stability margin estimates

SNR k6
0

#R 0
10 dB !0)0002
5 dB !0)008

2)5 dB !0)012
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3.2. APPLICATION TO AN AEROELASTIC SYSTEM

The aeroelastic model considered is an airfoil in a supersonic #ow with the
unsteady-aerodynamic model given by the piston theory [20]. As shown in the
Appendix A (see also reference [15] for similar applications), it is possible to "nd
the state-space matrix A representing the linear part of the system and the vector
f containing cubic non-linearities: these non-linearities are both structural (due to
non-linear hardening and softening, translational and rotational springs) and
aerodynamic.

Several numerical simulations were carried out for di!erent combinations of the
dimensionless parameters of the system, e.g., at di!erent values of the Mach number
M

=
. In Figure 13 the responses (plunge and pitch) are shown in pre-critical

(M
=
"2(M

=F
; M

=F
"2)69) and post-critical (M

=
"3)2'M

=F
) conditions. Since

the non-linearities are stabilizing (c(1)
R
'0), the system presents a stable limit cycle

for M
=
'M

=F
; as one can see from Figure 13, the time histories found by numerical

integration are very close to the ones obtained by using equation (22).
By analyzing the CWT sections for q"constant (as shown in the previous

section) the limit-cycle frequencies were identi"ed; as in this case c(1)
I
O0, c(n)

I
O0,

the natural frequencies vary during the transient response. Identifying the local
maxima of the CWT sections for several values of q6 , the wavelet transform has
allowed one to identify u

1
(q), u

3
(q) predicted by equations (31) and (32). In Figures

14 and 15 the limit-cycle frequencies*as analytically predicted by perturbation
analysis*are compared to the ones identi"ed by using the FWT and the CWT
estimates. As one can see from the "gures, the CWT allows a better identi"cation of
u

1
, u

3
because of its higher time-frequency resolution. It has to be pointed out that

the variation of u
1
, u

3
during the transient phase is dependent on the chosen initial

condition (through the coe$cients k and u
0
; see equations (14) and (15)); then, if the

initial conditions are not so relevant, it may become very di$cult to identify these
functions because of their very small relative variations.

On the other hand, if u
1

and u
3

have small relative variations during the
transient response, it is still possible to identify the amplitudes A

1
and A

3
by using

the CWT cross-sections for u"u
1

and u
2

respectively; in Figure 16 the CWT
cross-sections of the time-history of the pitch angle, corresponding to the dominant
frequencies, are shown. It has been found that while the identi"cation of the
theoretically predicted A

1
is very good, it is very di$cult to identify the amplitude



Figure 13. Response to initial conditions of an airfoil in a supersonic #ow with cubic non-linearities
(M

=
"2 and 3)2; M

=F
"2)69). ** R}K; ) ) ) ) Lie.
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A
3
: this happens because, besides considering the motivations exhibited in the

previous application, the slave mode has a very high damping, so it dissipates
energy much faster than the other mode, and the energy associated with it becomes
quickly very small if compared with the energy associated to the critical mode.
Then, the energy associated to the slave mode is considerable only at the very
beginning of the time-history, where the truncation error in evaluating the CWT is
still very high. In order to avoid this condition, one could choose the initial
conditions in order to excite the slave mode signi"cantly. All the modes performing
this behaviour are highly damped, and then they are not so relevant for the
identi"cation of the system stability margin; in fact, in the following it is shown that
it is necessary to identify the slope / of the CWT semi-logarithmic cross sections. In
Figure 17 the semi-logarithmic cross sections of the CWT envelopes of the pitch
responses (corresponding to the frequency u

1
) are shown for di!erent signal-to-

noise ratios and di!erent Mach numbers. As predicted by equation (42), / linearly
decreases as k (i.e., M

=
) approaches k

0
(M

=F
); after identifying / by using a least-

squares straight line applied to the results obtained for di!erent values of M
=

, the
critical M

=F
is robustly estimated. The results are also summarized in Table 2 and

show a very low sensitivity to the noise level for the same reasons explained in the
previous section; thus, the identi"cation of the system stability margin through
pre-critical tests with very low SNR (which is a very important and realistic



Figure 14. Identi"cation of critical (top) and slave (bottom) characteristic frequencies for
M

=
(M

=F
. ** Theor.; ) ) ) ) CWT; }n} FWT.
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experimental condition for #ight tests) can be performed for such a non-linear
system in the neighbourhood of a Hopf bifurcation.

4. CONCLUSIONS

In this paper a direct theoretical relationship between the analytical predictions
of the responses of non-linear systems in the neighbourhood of a Hopf bifurcation
(obtained by the singular perturbation analysis) and the results of a time-scale
analysis applied on the time data via the continuous wavelet transform has been
found and veri"ed. This link has been established by exploiting the opportunity,
given by wavelet analysis, to analyze and capture the features of transient responses
(e.g., a time-varying spectral content). This relation has also allowed the
identi"cation of the system main features (e.g., non-linearity) by examining its
response to initial conditions in the absence and also in the presence of noise.
Speci"cally, it allows one to identify the characteristic frequencies (that are the
natural frequencies in the case of free response of linear systems) which are not
constant during the transient response of non-linear systems. Furthermore, it
allows one to identify the stability of each mode of the linear part of the system, the
incoming of a limit cycle, and the system stability margin through pre-critical tests.
The proposed methods have been shown to have a very low noise sensitivity; thus



Figure 15. Identi"cation of critical (top) and slave (bottom) characteristic frequencies for
M

=
'M

=F
. ** Theor.; ) ) ) ) CWT; }n} FWT.

Figure 16. CWT cross sections and theoretically predicted (perturbation analysis) envelopes
(M

=
"2 and 3)2; M

=F
"2)69). ** CWT c.s.; ) ) ) )Theor. .
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Figure 17. Semi-logarithmic plot of CWT cross sections for di!erent values of the M
=

and of the
signal-to-noise ratio. #M

=
"1)5; K M

=
"2)3; M

=
"2)5.

TABLE 2

Stability margin estimates: e is the error in percent on
the -utter-boundary estimate

SNR MM
=F

e (%)

#R 2)693 0)096
10 dB 2)688 !0)107
5 dB 2)687 !0)145

2)5 dB 2)685 !0)219
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they might be e$ciently applied to time-histories obtained by real aeroelastic #ight
tests or by those of a general non-linear systems in the neighbourhood of a Hopf
bifurcation.
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APPENDIX A

In this appendix the equations governing the non-linear #utter of an airfoil in
a supersonic #ow will be presented (see also reference [15]). The motion x(f, t) may
be written as

x(f, t)"x
0
#u(f, t), (A1)
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where f is the section chordwise co-ordinate, x
0

is the equilibrium position and the
displacement u(f, t) is assumed to be a linear combination of the functions /

r
(f):

u(f, t)"+
r

u
r
(t)/

r
(f) . (A2)

Upon considering for a rigid airfoil, as degrees of freedom, the vertical displacement
(u

1
(t)"h (t)) and the rigid rotation (u

2
(t)"a(t)), the corresponding assumed

functions become: /
1
(f)"k, /

2
(f)"!(f!f

c
)k; where k is the unit vector

normal to the chordwise and spanwise directions and f
c
is the abscissa of the centre

of mass.
With m and J

c
the mass and the moment of inertia (with respect to the centre of

mass) of the airfoil, the Lagrange equations of motion become

mhG#LE/Lh"e
h
, J

c
aK#LE/La "ea, (A3, A4)

where E is the elastic energy and e
h
, ea are the generalized forces associated with the

assumed modes (whose expression is e
r
"{

C
t)/

r
ds, t being the aerodynamic force

per unit length).
For a non-linear elementary model and the elastic energy is expressed as

E"1
2
k
h
(h#Da)2#1

4
k@
h
(h#*a)4#1

2
kaa2#1

4
k@aa4, (A5)

where D"f
c
!f

e
(f

e
is the elastic center abscissa) and k

h
, k@

h
, ka, and k@a are elastic

constants.
The non-linear piston theory is used [20] and then the pressure distribution is

given by

p"p
=C1#

1
2 A

c
p

c
v

!1B
w
a
=
D
2cp@cp~cv

, (A6)

where the downwash is given by

w"(1/n
z
) M[h0 !(f!f

c
) cos aaR ]n

z
!;

=
nfN (A7)

and ;
=

, a
=

are the velocity of the #ow and the speed of sound; c
p
, c

v
the speci"c

heats of the air and nf"n)i, n
z
"n )k where i is the chordwise unit vector.

Combining the preceeding equations, for a zero-thickness, uncambered airfoil,
and neglecting the higher order terms, one has that the model is described by

xR "Akx#f (x, k), (A8)

where the state-space variables are: xT"[m, a, mQ , aR ]. Upon using the dimensionless
parameters:

m"h/b, q"ta
=

/b, M
=
";

=
/a

=
, X2m"k

h
b2/ma2

=
, X2a"kab2/J

c
a2
=

,

d"D/b , l"J
c
/mb2 , g"m/4o

=
b2 , p"1/g , a"4;

=
o
=

b2/ma
=

, (A9)
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the coe$cients of the system are

A"

0 0 1 0

0 0 0 1

!X2m !X2m d !pS
0

pS
1

!X2m d/l !(X2m d2#lX2a )/l pS
1
/l !pS

2
/l

#a

0 0 0 0

0 0 0 0

0 S
0

0 0

0 !S
0
/l 0 0

,

(A10)

f"

0

0

fm
fa/l

#

0

0

gm
ga/l

, (A11)

where: S
n
"(1/2b):b

~b
[(f!f

c
/b)]n df (n"024), and

fm"1
6

K
12

a3!kK m(m#da)3, (A12)

fa"1
2

K
12

ma2#2
3

X2m d2a3!dkK m(m#da)3!lkK aa3 , (A13)

gm"p (!1
6

S
0
M

=
a3#1

2
S
0
a2mQ !S

1
a2aR )#sp[S

0
(M

=
a!mQ )3

#3S
1
(M

=
a!mQ )2aR #3S

2
(M

=
a!mQ )aR 2#S

3
aR 3], (A14)

ga"p (!1
3

S
1
M

=
a3#1

2
S
2
a2aR )!sp[S

1
(M

=
a!mQ )3#3S

2
(M

=
a!mR )2aR

#3S
3
(M

=
a!mQ )aR 2#S

4
aR 3], (A15)

and kK m"(k@
h
b4/ma2

=
), kK a"(k@ab2/J

c
a2
=
) and s"(1#c

p
/c

v
)/12.
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